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In describing the motion of a fluid the Eulerian method is generally 

used. In the case of an incompressible fluid, which is considered in the 

present Paper, the velocity field u(<, t) serves as the Eulerian flow 

characteristic (the pressure can be expressed by quadratic combinations 

of the velocities). The Navier-Stokes equations (together with the con- 

tinuity equation) in principle permit this field to be determined at 

each moment of time t > t,, for given initial field se(c) = ~(5, to). 

In a series of hydrodynamic problems it becomes necessary to describe 

the motion of individual (marked) fluid particles or the evolution of 

surfaces or volumes which consist of fixed fluid particles. In such prob- 

lems it is more convenient to use the Lagrangean method to describe the 

fluid motions. This method is of especial interest in the statistical 

description of turbulent motions. 

Thus, Taylor [II formulated the basic concepts of the theory of 

turbulent diffusion (which is none other than the statistical effect of 

the transport of mixtures by moving fluid particles) in terms of the 

Lagrangean correlation functions of the velocity field. The Lagrangean 

method holds greater prospects for the subsequent development of the 

theory of the local structure of turbulence, i.e. the statistical struc- 

ture of the relative motions in the neighborhood of fixed fluid 

particles; the use of approximate semi-Lagrangean hydrodynamic equations 

has already permitted a series of interesting results to be obtained in 

the study of the spectra of passive mixtures [2,3] and of the turbulent 

energy spectrum [41 in a region of minimum scales of the turbulent 

fluctuations, as well as in the statistical description of the stretch- 

ing of material lines and surfaces in a turbulent flow [5]. Finally, the 

Lagrangean method has a definite advantage in understanding fluid 
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a nonlinear mechanical system whose evolution occurs because 
interactions among its particles. 

Because of the appareut cumbersomeness of the Lagrangean equations of 
the hydrodynamics of a viscous fluid the structure of these equations 
has until now not been studied in sufficient measure and they have still 
not found proper application in specific problems. Also some highly 
limited information has been successfully obtained [Sl on the Lagrangean 
characteristics of locally-isotropic turbulence without using the dynamic 
equations. 

A report by Pierson [T] was devoted to this proLlem at the Inter- 
national Symposium on Turbulence in September 1961 in Marseille. However, 
Pierson did not succeed in revealing the structure of the Lagrangean 
equations and in writing them in compact form; in addition, the attempt 
which he carried out to study the linearized Lagrangean equations in- 
volved a violation of the continuity condition (which Pierson himself 

also indicated). 

1. Equations for the Cartesian coordinates of the fluid 
particles. ?he function $(x, t) which determines at each moment of 
time t the coordinates of t!le fluid particles which are identified by the 
values of the parameter x serves as the exhaustive lagrangean character- 
istic of the flow of an incompressible fluid. The hydrodynamic equations 
in principle permit the function C(X, t) to be determined at any t > to 
for given initial values of the velocities of the fluid particles 

‘Ihe connection between the Lagrangean and Eulerian characteristics is 
given by the relation 

% (x, t> / at = u re (x, 0, t1 (1.1) 

The transformation from an Eulerian descriptioz to a i+,ran,-ean ile- 
scription leads to the replacement of the independent variables (<, t) 

in the hydrodynamic equations by (x, t) and to the transformation from 
the unknown function u(C, t) to the new unknown function <(x, t ),’ which 

is carried out according to Formula (1.1). 

Fenceforth, we shall use the initial values of their spatial coordi- 

nates as the lagrangean parameters of the fluid particles, i.e. we shall 

take 

x = 5 (x, t,) (1.2) 

Let (<I, c2, t3) and (x1, .z2, x3) be the Cartesian components of the 
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vector; c and X. Replacing the independent variables (c’, e*, g3, t) by 

(xl, x , x3, t) means a transformation from Cartesian coordinates to non- 

stationary curvilinear and non-orthogonal coordinates which follow the 

motion of the fluid. Actually, each coordinate of the surface x1 = const 

consists at all times of the same fluid particles; at the initial moment 

such surfaces are planes, but with the flow of time they move with the 

fluid and are distorted. The use of moving coordinates in hydrodynamics 

was proposed as long ago as 1948 by Zel’manov 181 who called it the 

method of unitary treatment of the motions of a continuous medium. 

In the subsequent calculations we shall use the notation 

a (4 B, C) 
a (xl, xa,s-‘) = IA B, Cl (1.3) 

for the Jacobian with respect to the variables x1, x2, x3. 

R’ithout further stipulations we shall make use of the fact that the 

value of [A, B, ~1 is not changed for a cyclic permutation and that the 

sign changes for an acyclic permutation of the variables il, B, C. 

In the transformation from the Eulerian variables Ea to the lagrangean 

variables $ h ’ f’ t e in initesimal transformation matrix 

(detT = I T I= [El, E2, PI) 

plays an important role. 

According to (1.2) aca//a_$ = 5+ at the initial moment of 

the matrix T,, is represented by a single quantity and JT, ] = 
quantities axa/?@ are the principal eleme:ts of the inverse _. 

time, i.e. 

1. ?he 

matrix T”, 

i.e. the algebraic sums of the elements a<P/ax” in the matrix T divided 

by 1TI.H ence for computing derivatives with respect to the Eulerian 

variable c1 we have 

:Iere and subsequently i, j, k are the cyclic permutation of the indices 

1, 2, 3. Indeed, having written the left-hand side of Formula (1.4) in 

the form 

(here and subsequently sumnation is implied by repeated Greek indices) 

we shall convince ourselves that the same expression is obtained by ex- 

panding the determinant on the right-hand side with respect to the ele- 

ments of the third row. 
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With the help of Formulas (1.4) and (1.1) we obtain 

the velocity 

for the divergence 
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all 
2 - a 3” _ 1 
X” -agll at py ([8%l/ at, E2, ET + [El> a%2 / at, ES1 + 

+ r%‘, E2, a%S I ql) = +j aq 
Here uo are the Cartesian components of the velocity. In the case of 
incompressible fluid the divergence of the velocity is identically 

zero, i.e. 

aITl/at=O, or IT\zIT(_+l 

In other words, the continuity equation for an incompressible fluid 
takes the form 

I%‘, %2, %“I = 1 (4.5) 

in lagrangean variables. 

We shall make further use of Formula (1.41, letting IT) = 1 on the 
right-hand side. With the help of this formula the expression 

A,f =$$ = [S2, Es9 I%‘, Es, fll + [Es, E’, [Es> El, fll + If’, %‘, [El, E2, fll (1.6) 

is obtained for the Laplacian operator with respect to the Eulerian vari- 
ables. 

Ihe equations of motion of an incompressible viscous fluid in Eulerian 
variables have the form 

du. 
l=- 
dt 

(P=$) (l-7) 

Here p is the pressure, p is the density, and v is the kinematic co- 
efficient of viscosity. Using Formulas (1.11, (1.4) and (1.6) we trans- 
form (1.7) to Iagrangean variables in the following way 

aqi 
ata = - [%j,.%", PI + v (I%", %9, [E2, ES, W/WI + [ES, El, [ES, EL, w / w + 

t [El, E2, [El, E2, agi / at111 V.8) 

Equations (1.5) and (1.8) constitute the complete system of equations 
of the dynamics of an incompressible fluid in.Lagrangean variables. 

‘Ihe forces which describe the interaction between the components of a 
mechanical system correspond to the terms in the equations of motion 
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which are nonlinear with respect to the basic dynamical variables. In the 

Navier-Stokes equations (1.7) the terms which are nonlinear with respect 
to the variables ui are contained in the expression for the acceleration 

"i/d'; the forces of inertial interactions between the spatial non-uni- 

formities of the velocity field u(<, t) correspond to them; the pressure 

gradient as well is expressed through these forces (we emphasize that the 

viscous forces are described in (1.7) by linear expressions). 

'Ihe inertial interactions, however, have a relative character - they 

are eliminated by transformation to a moving observation system. In the 
Lagrangean equations of motion (1.8) the real forces of interaction be- 

tween the fluid particles - the pressure gradient and viscous forces - 

are, on the contrary, described by expressions which are nonlinear with 

respect to the basic dynamical variables c'. 

We note that the viscous interaction forces are described in the 

Lagrangean equations by nonlinear expressions of fifth degree with re- 

spect to the variables 5' (whereas in the Navier-Stokes equations the 

inertial interactions are described by nonlinear expressions of second 

degree with respect to the variables ui). 

Tne ratio of the magnitudes of the nonlinear and linear terms in the 

equations of motion which are characteristic for a given problem can be 

called the constant of interaction. Thus, in the case of the Navier- 

Stokes equations the constant of inertial interaction is the ratio of the 

characteristic magnitudes of the inertial forces and the viscous forces, 

i.e. the Reynolds number R. In the case of the Lagrangean equations the 

constant of viscous interaction is the ratio of the characteristic 

magnitudes of the viscous forces and the total acceleration, i.e. l/R. 

For sufficiently large values of R (characteristic of well-developed 
turbulence) the inertial interactions which are taken into account in 

the Eulerian description of the motion are strong; on the contrary, the 

viscous interactions which are taken into account in the Lagrangean de- 

scription are weak. 

We shall s!low some special cases in which the form of the Lagrangean 

equations is somewhat sim lified. 

Pl anes x 3 = const , i.e. irg E x3 
Let the motion take place only in 

(planar motion). Then using the binomial 

symbol in square brackets for the two-dimensional .Tacobian 

a (A. B) 
- = [A, B1 a (xl, 22) (l-9) 

Equations (1.5) and (1.8) can be reduced to the form 
/ 
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[El, %21 = 1 

w 
ata - - [P, E21 + y (E1, [El, a%?/ WI + lE2, E2, a%l/ WI + 

+ 1%l, E2, I%‘, E2, d%l/ atll) 

w 
ata - - [El, Pl + y ([E’, [El, a%2 / WI + [%“I [E2, aE2 / WI + 

+ IElf E2, [El, E2, dE2 I atlo (1.10) 

The third equation of motion reduces to the form [c’, c2, PI = 0 and 
indicates that the dependence of P on the four arguments x1, x’, x3, t 
reduces to dependence on three arguments S’(X, t), t2(x, t) and t. In 
the case of two-dimensional planar motion (when $3 z x3, and 5’ and t2 
are independent of x3) the third terms in the parentheses in (1.10) 

vanish and the third equation of motion takes the form ori u.z -\nn.3 3 c)* 

In the case of plane parallel motion along the x1- axis (i.e. for 
.2 E X2 
5 ) c3 = X3> tl le continuity equation is equivalent to the formula 

F;l = 21 + \ u (x2,39, t) dt (1.11) 

1. 

and the equation of motion acquires the linear form 

(1.12) 

The other two equations of motion show that P is a function only of 
<‘(x, t) and t. 

2. ‘Ihe problem of turbulence. To describe statistically the 
turbulent motion of a fluid we shall consider the field C(X, t) as a 
random function of space-time points. For a complete statistical de- 
scription of turbulence one can use a method proposed by Hopf [91 which 
consists of finding the characteristic functional of the random function 
C(X, t) defined by the formula 

CR (7j (x, t)} = ( eQe**)), CL rl) = \ E” (XV t> ?la (x, t> dx& (2.1) 

where the integral extends over the whole region of space-time in which 
the fluid motion occurs and the symbol <.4> designates the mathematical 
expectation of the random quantity A. 

‘lhe functional @ is an exhaustive statistical characteristic of the 
random field S(X, t) because for functional ar,ments of the form 
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q (x, t) = i i ak B (x - xk) 6 (t - tk) 
k=l. 

the values of Q, are the characteristic functions of the probability dis- 

tributions for values of the field c over any finite large number of 
space-time points (X,, t,). 

In addition to the functional a, we shall introduce into consideration 
the operator 

II (7l (x, t); x, t) = < P (x, t) e’(S.+*)) (2.2). 

For the functionals or operators I on a large number of functions 
q(x, t) we shall introduce the variational derivative operator Dk(x, t>, 
taking 

(2.3) 

Specifically, the following formula for variational differentiation 
will be needed 

Finally we shall use the identity 

(2.3) 

Here a@ = + 1 if (a, p, y) is a cyclic permutation of the indices 
(1, 2, 3) and se = - 1 if (a, p, y) is an acyclic permutation; pPY=() 

if even two of the indices a, f3, y are the same. 

Multiplying Equations (1.5) and (1.8) by ei(caT) and then applying 
the mathematical expectation operator, these equations can with the help 
of Formulas (2.4) to (2.5 ) be reduced to the form 

(2-S) 

In these equations all operators D, and l’f are taken at the point 
(x, t ). Ihe operator D, is linear, therefore Equations (2.6) to (2.7) 
form a system of linear equations with respect to UI and Il. Ifence, in 
particular, it follows that TI = LO where L is some linear operator, Thus, 
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the problem of the complete statistical description of turbulence reduces 
to solving linear equations, which is the principal advantage of the 
method that has been presented (we shall observe, however, that the appa- 
ratus for solving the equations in variational derivatives has not yet 
been devised 1. 

‘Ihe function c(X, t ) is simply determined by the initial velocity 

field 

VII w = [qq,=,, 

The complete statistical description of this field is given by the 

characteristic functional 

‘Ihus, taking 
rlo(x,t,z) =y(x) W--l+;--8(t--to) 

(2.8) 

(2.9) 

it should be required that the functional 0 satisfy the initial condition 

fim @ (qo (x9 t, z)) = v {y (x)) 
‘74 

in which the functional V is given. 

(2.10) 

3. The covariant Lagrangean equations and their linear- 
ization. 'The continuity equation and the Navier-Stokes equations can 
be transformed to Iagrangean variables in such a way that only the con- 
travariant components of the fluid particles defined by the relations 

and the components of the metric tensor of the moving space 

(3-l) 

appear as the unknown functions in them. 

We emphasize that the quantities gik depend on t, i.e. that the metric 
of the moving space is nonstationary. At the initial moment t = t,, we 

have gik = 6ik. 

Ihe matrix G = I( gik 11 
T = ]jasi/hk 11, h 

is the product of the matrices F = I)aEjk/anill, 

w ose determinants are the same and in the case of an 
incompressible fluid are equal to unity; consequently, in this case the 
determinant I G I of the matrix 11 gik(I is identically equal to unity. 
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We shall also introduce the inverse matrix G-l= )I gik 11 and the 

Christoffel symbol of the second kind 

and we shall use the identity 

r:,= 0 

which follows from the condition /Cl= 1. 

Ihe expression for the divergence of the velocity can be transformed 

in the following way 

a ay a4 a 

a% ( ‘I w --=_- vY_ 
a$ apavy 

= at a%" axP I 

=_ 

axy / --+v$&gy a%" axy axfl 

'Ihe factor of VY in the second term is equal to r ILo and the 

first term reduces to the form a@/&@. 'Ihus, the co%inuit; equation 

for an incompressible fluid can be written in the form 

(3.4) 

We shall now find the expression for the contravariant component of 

the acceleration. Using the second formula of (3.1) twice, we obtain 

. aa%= axi 
w’= ata --$ = 

axf a 
f 1 ‘vp a%" 

a%= at , a7 

ad + vp axi a 
=Tz 

--- ( 1 vYala = 
a%" a4 axy 

z g + VP (;$ + vyr;, ) 

The expression in parentheses in the last formula is the covariant 

derivative vpvi. 

In addition, the contravariant component of the pressure gradient has 

the form giaaP/aza, and the laplacian of the velocity is g o@@aVP~" (we 

note that the covariant derivatives are permutational because the moving 

space is Euclidian and, consequently, the corresponding Riemann- 

Christoffel tensor is equal to zero). 

Thus, the equations of motion can be written in the form 

a$ + VT7 gi = - gi” !Ea + vgapvcrvpvi (3.5) 

to 
We 

We shall use the lagrangean equations of hydrodynamics (3.4) to (3.5) 

describe small oscillations of the fluid relative to the rest state. 

shall consider the quantities va to be small and we shall linearize 
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the Equations (3.5), neglecting the terms which are quadratic with re- 

spect to v' and replacing the quantities g ik and the Christoffel symbols 

with values which correspond to a fluid at rest (i.e. g ik = Eik and 

‘jk 1 = 0). 

The linearized equations of motion will have the form 

ad -= 
at 

- a:* + vAvi (3.6) 

IIere v is the Iaplace operator with respect to the variables xa. 

These equations together with the continuity .equation (3.4) permit 

the quantities vi(X, t) to be determined for given initial values v”(x, 
t,) = Us (where ui are the Cartesian components of the velocity at 

the initial moment). 

Actiording to (3.1) the quantities v' are expressed nonlinearly in the 

Cartesian coordinates of the fluid particles ta; however, in using Equa- 
tions (3.4) and (3.6) there is no need to linearize these expressions, 

so that the continuity equation remains exact. This is an important 

advantage of the proposed procedure for linearizing the Lagrangean equa- 

tions in comparison to the linearization of the equations for the 

Cartesian coordinates of the fluid particles, which was carried out by 

Pierson and which is associated with a violation of the continuity equa- 

tion. Fe note that after determining the quantities v’(x, t) with the 

help of Equations (3.4) to (3.6) t!le Cartesian coordinates of the fluid 

particles c”(X, t) can be found from the two Equations (3.1) which for 

known II' are linear with respect to the quantities 5'. 
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